Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra. | −h6+h5−h3+h1 | g6+g3 | g5+g1 | g16+g15+g12+5/3g2 | g11+g7 | −g31−2g30+g29 | g32 | g33 | g34 | g36 |
weight | 0 | ω2 | ω2 | 2ω1 | 2ω2 | 6ω1 | 6ω1+ω2 | 6ω1+ω2 | 6ω1+2ω2 | 10ω1 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | 0 | ω2−6ψ | ω2+6ψ | 2ω1 | 2ω2 | 6ω1 | 6ω1+ω2−6ψ | 6ω1+ω2+6ψ | 6ω1+2ω2 | 10ω1 |
Isotypical components + highest weight | V0 → (0, 0, 0) | Vω2−6ψ → (0, 1, -6) | Vω2+6ψ → (0, 1, 6) | V2ω1 → (2, 0, 0) | V2ω2 → (0, 2, 0) | V6ω1 → (6, 0, 0) | V6ω1+ω2−6ψ → (6, 1, -6) | V6ω1+ω2+6ψ → (6, 1, 6) | V6ω1+2ω2 → (6, 2, 0) | V10ω1 → (10, 0, 0) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | W8 | W9 | W10 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. | Cartan of centralizer component.
|
|
| Semisimple subalgebra component.
| Semisimple subalgebra component.
|
|
|
|
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | ω2 −ω2 | ω2 −ω2 | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 6ω1+ω2 4ω1+ω2 6ω1−ω2 2ω1+ω2 4ω1−ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −4ω1+ω2 −2ω1−ω2 −6ω1+ω2 −4ω1−ω2 −6ω1−ω2 | 6ω1+ω2 4ω1+ω2 6ω1−ω2 2ω1+ω2 4ω1−ω2 ω2 2ω1−ω2 −2ω1+ω2 −ω2 −4ω1+ω2 −2ω1−ω2 −6ω1+ω2 −4ω1−ω2 −6ω1−ω2 | 6ω1+2ω2 4ω1+2ω2 6ω1 2ω1+2ω2 4ω1 6ω1−2ω2 2ω2 2ω1 4ω1−2ω2 −2ω1+2ω2 0 2ω1−2ω2 −4ω1+2ω2 −2ω1 −2ω2 −6ω1+2ω2 −4ω1 −2ω1−2ω2 −6ω1 −4ω1−2ω2 −6ω1−2ω2 | 10ω1 8ω1 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 −8ω1 −10ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | 0 | ω2−6ψ −ω2−6ψ | ω2+6ψ −ω2+6ψ | 2ω1 0 −2ω1 | 2ω2 0 −2ω2 | 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 | 6ω1+ω2−6ψ 4ω1+ω2−6ψ 6ω1−ω2−6ψ 2ω1+ω2−6ψ 4ω1−ω2−6ψ ω2−6ψ 2ω1−ω2−6ψ −2ω1+ω2−6ψ −ω2−6ψ −4ω1+ω2−6ψ −2ω1−ω2−6ψ −6ω1+ω2−6ψ −4ω1−ω2−6ψ −6ω1−ω2−6ψ | 6ω1+ω2+6ψ 4ω1+ω2+6ψ 6ω1−ω2+6ψ 2ω1+ω2+6ψ 4ω1−ω2+6ψ ω2+6ψ 2ω1−ω2+6ψ −2ω1+ω2+6ψ −ω2+6ψ −4ω1+ω2+6ψ −2ω1−ω2+6ψ −6ω1+ω2+6ψ −4ω1−ω2+6ψ −6ω1−ω2+6ψ | 6ω1+2ω2 4ω1+2ω2 6ω1 2ω1+2ω2 4ω1 6ω1−2ω2 2ω2 2ω1 4ω1−2ω2 −2ω1+2ω2 0 2ω1−2ω2 −4ω1+2ω2 −2ω1 −2ω2 −6ω1+2ω2 −4ω1 −2ω1−2ω2 −6ω1 −4ω1−2ω2 −6ω1−2ω2 | 10ω1 8ω1 6ω1 4ω1 2ω1 0 −2ω1 −4ω1 −6ω1 −8ω1 −10ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M0 | Mω2−6ψ⊕M−ω2−6ψ | Mω2+6ψ⊕M−ω2+6ψ | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M6ω1+ω2−6ψ⊕M4ω1+ω2−6ψ⊕M6ω1−ω2−6ψ⊕M2ω1+ω2−6ψ⊕M4ω1−ω2−6ψ⊕Mω2−6ψ⊕M2ω1−ω2−6ψ⊕M−2ω1+ω2−6ψ⊕M−ω2−6ψ⊕M−4ω1+ω2−6ψ⊕M−2ω1−ω2−6ψ⊕M−6ω1+ω2−6ψ⊕M−4ω1−ω2−6ψ⊕M−6ω1−ω2−6ψ | M6ω1+ω2+6ψ⊕M4ω1+ω2+6ψ⊕M6ω1−ω2+6ψ⊕M2ω1+ω2+6ψ⊕M4ω1−ω2+6ψ⊕Mω2+6ψ⊕M2ω1−ω2+6ψ⊕M−2ω1+ω2+6ψ⊕M−ω2+6ψ⊕M−4ω1+ω2+6ψ⊕M−2ω1−ω2+6ψ⊕M−6ω1+ω2+6ψ⊕M−4ω1−ω2+6ψ⊕M−6ω1−ω2+6ψ | M6ω1+2ω2⊕M4ω1+2ω2⊕M6ω1⊕M2ω1+2ω2⊕M4ω1⊕M6ω1−2ω2⊕M2ω2⊕M2ω1⊕M4ω1−2ω2⊕M−2ω1+2ω2⊕M0⊕M2ω1−2ω2⊕M−4ω1+2ω2⊕M−2ω1⊕M−2ω2⊕M−6ω1+2ω2⊕M−4ω1⊕M−2ω1−2ω2⊕M−6ω1⊕M−4ω1−2ω2⊕M−6ω1−2ω2 | M10ω1⊕M8ω1⊕M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1⊕M−8ω1⊕M−10ω1 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Isotypic character | M0 | Mω2−6ψ⊕M−ω2−6ψ | Mω2+6ψ⊕M−ω2+6ψ | M2ω1⊕M0⊕M−2ω1 | M2ω2⊕M0⊕M−2ω2 | M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1 | M6ω1+ω2−6ψ⊕M4ω1+ω2−6ψ⊕M6ω1−ω2−6ψ⊕M2ω1+ω2−6ψ⊕M4ω1−ω2−6ψ⊕Mω2−6ψ⊕M2ω1−ω2−6ψ⊕M−2ω1+ω2−6ψ⊕M−ω2−6ψ⊕M−4ω1+ω2−6ψ⊕M−2ω1−ω2−6ψ⊕M−6ω1+ω2−6ψ⊕M−4ω1−ω2−6ψ⊕M−6ω1−ω2−6ψ | M6ω1+ω2+6ψ⊕M4ω1+ω2+6ψ⊕M6ω1−ω2+6ψ⊕M2ω1+ω2+6ψ⊕M4ω1−ω2+6ψ⊕Mω2+6ψ⊕M2ω1−ω2+6ψ⊕M−2ω1+ω2+6ψ⊕M−ω2+6ψ⊕M−4ω1+ω2+6ψ⊕M−2ω1−ω2+6ψ⊕M−6ω1+ω2+6ψ⊕M−4ω1−ω2+6ψ⊕M−6ω1−ω2+6ψ | M6ω1+2ω2⊕M4ω1+2ω2⊕M6ω1⊕M2ω1+2ω2⊕M4ω1⊕M6ω1−2ω2⊕M2ω2⊕M2ω1⊕M4ω1−2ω2⊕M−2ω1+2ω2⊕M0⊕M2ω1−2ω2⊕M−4ω1+2ω2⊕M−2ω1⊕M−2ω2⊕M−6ω1+2ω2⊕M−4ω1⊕M−2ω1−2ω2⊕M−6ω1⊕M−4ω1−2ω2⊕M−6ω1−2ω2 | M10ω1⊕M8ω1⊕M6ω1⊕M4ω1⊕M2ω1⊕M0⊕M−2ω1⊕M−4ω1⊕M−6ω1⊕M−8ω1⊕M−10ω1 |
2 & | 0\\ |
0 & | 2\\ |