Processing math: 100%
Subalgebra A281+A21E16
42 out of 119
Computations done by the calculator project.

Subalgebra type: A281+A21 (click on type for detailed printout).
Subalgebra is (parabolically) induced from A281 .
Centralizer: T1 (toral part, subscript = dimension).
The semisimple part of the centralizer of the semisimple part of my centralizer: E16
Basis of Cartan of centralizer: 1 vectors: (1, 0, -1, 0, 1, -1)

Elements Cartan subalgebra scaled to act by two by components: A281: (6, 10, 12, 18, 12, 6): 56, A21: (1, 0, 1, 0, 1, 1): 4
Dimension of subalgebra generated by predefined or computed generators: 6.
Negative simple generators: g2+g12+g15+g16, g7+g11
Positive simple generators: 6g16+6g15+6g12+10g2, g11+g7
Cartan symmetric matrix: (1/14001)
Scalar products of elements of Cartan subalgebra scaled to act by 2 (co-symmetric Cartan matrix): (56004)
Decomposition of ambient Lie algebra: V10ω1V6ω1+2ω22V6ω1+ω2V6ω1V2ω2V2ω12Vω2V0
Primal decomposition of the ambient Lie algebra. This decomposition refines the above decomposition (please note the order is not the same as above). V6ω1+ω2+6ψV10ω1V6ω1+2ω2Vω2+6ψV6ω1V2ω2V2ω1V6ω1+ω26ψV0Vω26ψ
In the table below we indicate the highest weight vectors of the decomposition of the ambient Lie algebra as a module over the semisimple part. The second row indicates weights of the highest weight vectors relative to the Cartan of the semisimple subalgebra. As the centralizer is well-chosen and the centralizer of our subalgebra is non-trivial, we may in addition split highest weight vectors with the same weight over the semisimple part over the centralizer (recall that the centralizer preserves the weights over the subalgebra and in particular acts on the highest weight vectors). Therefore we have chosen our highest weight vectors to be, in addition, weight vectors over the Cartan of the centralizer of the starting subalgebra. Their weight over the sum of the Cartans of the semisimple subalgebra and its centralizer is indicated in the third row. The weights corresponding to the Cartan of the centralizer are again indicated with the letter \omega. As there is no preferred way of chosing a basis of the Cartan of the centralizer (unlike the starting semisimple Lie algebra: there we have a preferred basis induced by the fundamental weights), our centralizer weights are simply given by the constant by which the k^th basis element of the Cartan of the centralizer acts on the highest weight vector. Here, we use the choice for basis of the Cartan of the centralizer given at the start of the page.

Highest vectors of representations (total 10) ; the vectors are over the primal subalgebra.h6+h5h3+h1g6+g3g5+g1g16+g15+g12+5/3g2g11+g7g312g30+g29g32g33g34g36
weight0ω2ω22ω12ω26ω16ω1+ω26ω1+ω26ω1+2ω210ω1
weights rel. to Cartan of (centralizer+semisimple s.a.). 0ω26ψω2+6ψ2ω12ω26ω16ω1+ω26ψ6ω1+ω2+6ψ6ω1+2ω210ω1
Isotypic module decomposition over primal subalgebra (total 10 isotypic components).
Isotypical components + highest weightV0 → (0, 0, 0)Vω26ψ → (0, 1, -6)Vω2+6ψ → (0, 1, 6)V2ω1 → (2, 0, 0)V2ω2 → (0, 2, 0)V6ω1 → (6, 0, 0)V6ω1+ω26ψ → (6, 1, -6)V6ω1+ω2+6ψ → (6, 1, 6)V6ω1+2ω2 → (6, 2, 0)V10ω1 → (10, 0, 0)
Module label W1W2W3W4W5W6W7W8W9W10
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. Cartan of centralizer component.
h6+h5h3+h1
g6+g3
g1g5
g5+g1
g3+g6
Semisimple subalgebra component.
3/5g163/5g153/5g12g2
3/5h6+6/5h5+9/5h4+6/5h3+h2+3/5h1
1/5g2+1/5g12+1/5g15+1/5g16
Semisimple subalgebra component.
g11g7
h6+h5+h3+h1
2g7+2g11
g312g30+g29
g202g19+g17
g162g15+g12
h6+h5+h3h1
2g12+4g152g16
2g174g19+2g20
2g29+4g30+2g31
g32
g25
g28
g21
g13
g6+g3
g9
2g10
g1+g5
2g14
2g18
2g26
2g22
2g33
g33
g22
g26
g18
g14
g5g1
g10
2g9
g3+g6
2g13
2g21
2g28
2g25
2g32
g34
g27
g31g29
g24
g20+g17
2g23
g11+g7
g16+g12
2g8
2g4
h6+h5h3h1
2g4
2g8
2g12+2g16
2g7+2g11
2g23
2g172g20
4g24
2g29+2g31
4g27
4g34
g36
g35
g31g30g29
2g20+2g19+2g17
2g16+2g15+2g126g2
2h64h56h44h3+6h22h1
18g210g1210g1510g16
28g17+28g19+28g20
56g29+56g3056g31
168g35
168g36
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above0ω2
ω2
ω2
ω2
2ω1
0
2ω1
2ω2
0
2ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
6ω1+ω2
4ω1+ω2
6ω1ω2
2ω1+ω2
4ω1ω2
ω2
2ω1ω2
2ω1+ω2
ω2
4ω1+ω2
2ω1ω2
6ω1+ω2
4ω1ω2
6ω1ω2
6ω1+ω2
4ω1+ω2
6ω1ω2
2ω1+ω2
4ω1ω2
ω2
2ω1ω2
2ω1+ω2
ω2
4ω1+ω2
2ω1ω2
6ω1+ω2
4ω1ω2
6ω1ω2
6ω1+2ω2
4ω1+2ω2
6ω1
2ω1+2ω2
4ω1
6ω12ω2
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
6ω1+2ω2
4ω1
2ω12ω2
6ω1
4ω12ω2
6ω12ω2
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer0ω26ψ
ω26ψ
ω2+6ψ
ω2+6ψ
2ω1
0
2ω1
2ω2
0
2ω2
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
6ω1+ω26ψ
4ω1+ω26ψ
6ω1ω26ψ
2ω1+ω26ψ
4ω1ω26ψ
ω26ψ
2ω1ω26ψ
2ω1+ω26ψ
ω26ψ
4ω1+ω26ψ
2ω1ω26ψ
6ω1+ω26ψ
4ω1ω26ψ
6ω1ω26ψ
6ω1+ω2+6ψ
4ω1+ω2+6ψ
6ω1ω2+6ψ
2ω1+ω2+6ψ
4ω1ω2+6ψ
ω2+6ψ
2ω1ω2+6ψ
2ω1+ω2+6ψ
ω2+6ψ
4ω1+ω2+6ψ
2ω1ω2+6ψ
6ω1+ω2+6ψ
4ω1ω2+6ψ
6ω1ω2+6ψ
6ω1+2ω2
4ω1+2ω2
6ω1
2ω1+2ω2
4ω1
6ω12ω2
2ω2
2ω1
4ω12ω2
2ω1+2ω2
0
2ω12ω2
4ω1+2ω2
2ω1
2ω2
6ω1+2ω2
4ω1
2ω12ω2
6ω1
4ω12ω2
6ω12ω2
10ω1
8ω1
6ω1
4ω1
2ω1
0
2ω1
4ω1
6ω1
8ω1
10ω1
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a.M0Mω26ψMω26ψMω2+6ψMω2+6ψM2ω1M0M2ω1M2ω2M0M2ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M6ω1+ω26ψM4ω1+ω26ψM6ω1ω26ψM2ω1+ω26ψM4ω1ω26ψMω26ψM2ω1ω26ψM2ω1+ω26ψMω26ψM4ω1+ω26ψM2ω1ω26ψM6ω1+ω26ψM4ω1ω26ψM6ω1ω26ψM6ω1+ω2+6ψM4ω1+ω2+6ψM6ω1ω2+6ψM2ω1+ω2+6ψM4ω1ω2+6ψMω2+6ψM2ω1ω2+6ψM2ω1+ω2+6ψMω2+6ψM4ω1+ω2+6ψM2ω1ω2+6ψM6ω1+ω2+6ψM4ω1ω2+6ψM6ω1ω2+6ψM6ω1+2ω2M4ω1+2ω2M6ω1M2ω1+2ω2M4ω1M6ω12ω2M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M6ω1+2ω2M4ω1M2ω12ω2M6ω1M4ω12ω2M6ω12ω2M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1
Isotypic characterM0Mω26ψMω26ψMω2+6ψMω2+6ψM2ω1M0M2ω1M2ω2M0M2ω2M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M6ω1+ω26ψM4ω1+ω26ψM6ω1ω26ψM2ω1+ω26ψM4ω1ω26ψMω26ψM2ω1ω26ψM2ω1+ω26ψMω26ψM4ω1+ω26ψM2ω1ω26ψM6ω1+ω26ψM4ω1ω26ψM6ω1ω26ψM6ω1+ω2+6ψM4ω1+ω2+6ψM6ω1ω2+6ψM2ω1+ω2+6ψM4ω1ω2+6ψMω2+6ψM2ω1ω2+6ψM2ω1+ω2+6ψMω2+6ψM4ω1+ω2+6ψM2ω1ω2+6ψM6ω1+ω2+6ψM4ω1ω2+6ψM6ω1ω2+6ψM6ω1+2ω2M4ω1+2ω2M6ω1M2ω1+2ω2M4ω1M6ω12ω2M2ω2M2ω1M4ω12ω2M2ω1+2ω2M0M2ω12ω2M4ω1+2ω2M2ω1M2ω2M6ω1+2ω2M4ω1M2ω12ω2M6ω1M4ω12ω2M6ω12ω2M10ω1M8ω1M6ω1M4ω1M2ω1M0M2ω1M4ω1M6ω1M8ω1M10ω1

Semisimple subalgebra: W_{4}+W_{5}
Centralizer extension: W_{1}

Weight diagram. The coordinates corresponding to the simple roots of the subalgerba are fundamental.
The bilinear form is therefore given relative to the fundamental coordinates.
Canvas not supported




Mouse position: (0.00, 0.00)
Selected index: -1
Coordinate center in screen coordinates:
(200.00, 367.50)
The projection plane (drawn on the screen) is spanned by the following two vectors.
(1.00, 0.00, 0.00)
(0.00, 1.00, 0.00)
0: (1.00, 0.00, 0.00): (1600.00, 367.50)
1: (0.00, 1.00, 0.00): (200.00, 467.50)
2: (0.00, 0.00, 1.00): (200.00, 367.50)



Made total 1471223 arithmetic operations while solving the Serre relations polynomial system.
The total number of arithmetic operations I needed to solve the Serre relations polynomial system was larger than 1 000 000. I am printing out the Serre relations system for you: maybe that can help improve the polynomial system algorithms.
Subalgebra realized.
2*2 (unknown) gens:
(
x_{1} g_{-2}+x_{2} g_{-12}+x_{3} g_{-15}+x_{4} g_{-16}, x_{10} g_{16}+x_{9} g_{15}+x_{8} g_{12}+x_{7} g_{2},
x_{5} g_{-7}+x_{6} g_{-11}, x_{12} g_{11}+x_{11} g_{7})
h: (6, 10, 12, 18, 12, 6), e = combination of g_{2} g_{12} g_{15} g_{16} , f= combination of g_{-2} g_{-12} g_{-15} g_{-16} h: (1, 0, 1, 0, 1, 1), e = combination of g_{7} g_{11} , f= combination of g_{-7} g_{-11} Positive weight subsystem: 2 vectors: (1, 0), (0, 1)
Symmetric Cartan default scale: \begin{pmatrix}
2 & 0\\
0 & 2\\
\end{pmatrix}Character ambient Lie algebra: V_{10\omega_{1}}+V_{6\omega_{1}+2\omega_{2}}+V_{8\omega_{1}}+2V_{6\omega_{1}+\omega_{2}}+V_{4\omega_{1}+2\omega_{2}}+3V_{6\omega_{1}}+2V_{4\omega_{1}+\omega_{2}}+2V_{6\omega_{1}-\omega_{2}}+V_{2\omega_{1}+2\omega_{2}}+3V_{4\omega_{1}}+V_{6\omega_{1}-2\omega_{2}}+2V_{2\omega_{1}+\omega_{2}}+2V_{4\omega_{1}-\omega_{2}}+2V_{2\omega_{2}}+4V_{2\omega_{1}}+V_{4\omega_{1}-2\omega_{2}}+4V_{\omega_{2}}+2V_{2\omega_{1}-\omega_{2}}+V_{-2\omega_{1}+2\omega_{2}}+6V_{0}+V_{2\omega_{1}-2\omega_{2}}+2V_{-2\omega_{1}+\omega_{2}}+4V_{-\omega_{2}}+V_{-4\omega_{1}+2\omega_{2}}+4V_{-2\omega_{1}}+2V_{-2\omega_{2}}+2V_{-4\omega_{1}+\omega_{2}}+2V_{-2\omega_{1}-\omega_{2}}+V_{-6\omega_{1}+2\omega_{2}}+3V_{-4\omega_{1}}+V_{-2\omega_{1}-2\omega_{2}}+2V_{-6\omega_{1}+\omega_{2}}+2V_{-4\omega_{1}-\omega_{2}}+3V_{-6\omega_{1}}+V_{-4\omega_{1}-2\omega_{2}}+2V_{-6\omega_{1}-\omega_{2}}+V_{-8\omega_{1}}+V_{-6\omega_{1}-2\omega_{2}}+V_{-10\omega_{1}}
A necessary system to realize the candidate subalgebra.
x_{1} x_{7} -10= 0
x_{2} x_{8} -6= 0
x_{3} x_{9} +x_{2} x_{8} -12= 0
x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -18= 0
x_{4} x_{10} +x_{3} x_{9} -12= 0
x_{4} x_{10} -6= 0
x_{4} x_{12} -x_{2} x_{11} = 0
x_{8} x_{12} -x_{10} x_{11} = 0
x_{2} x_{6} -x_{4} x_{5} = 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{10} -x_{5} x_{8} = 0
The above system after transformation.
x_{1} x_{7} -10= 0
x_{2} x_{8} -6= 0
x_{3} x_{9} +x_{2} x_{8} -12= 0
x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -18= 0
x_{4} x_{10} +x_{3} x_{9} -12= 0
x_{4} x_{10} -6= 0
x_{4} x_{12} -x_{2} x_{11} = 0
x_{8} x_{12} -x_{10} x_{11} = 0
x_{2} x_{6} -x_{4} x_{5} = 0
x_{5} x_{11} -1= 0
x_{6} x_{12} -1= 0
x_{6} x_{10} -x_{5} x_{8} = 0
For the calculator:
(DynkinType =A^{28}_1+A^{2}_1; ElementsCartan =((6, 10, 12, 18, 12, 6), (1, 0, 1, 0, 1, 1)); generators =(x_{1} g_{-2}+x_{2} g_{-12}+x_{3} g_{-15}+x_{4} g_{-16}, x_{10} g_{16}+x_{9} g_{15}+x_{8} g_{12}+x_{7} g_{2}, x_{5} g_{-7}+x_{6} g_{-11}, x_{12} g_{11}+x_{11} g_{7}) );
FindOneSolutionSerreLikePolynomialSystem{}( x_{1} x_{7} -10, x_{2} x_{8} -6, x_{3} x_{9} +x_{2} x_{8} -12, x_{4} x_{10} +x_{3} x_{9} +x_{2} x_{8} -18, x_{4} x_{10} +x_{3} x_{9} -12, x_{4} x_{10} -6, x_{4} x_{12} -x_{2} x_{11} , x_{8} x_{12} -x_{10} x_{11} , x_{2} x_{6} -x_{4} x_{5} , x_{5} x_{11} -1, x_{6} x_{12} -1, x_{6} x_{10} -x_{5} x_{8} )